tagO is involved in the synthesis of all anionic cell-wall polymers in Bacillus subtilis 168.
نویسندگان
چکیده
Sequence homologies suggest that the Bacillus subtilis 168 tagO gene encodes UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme responsible for catalysing the first step in the synthesis of the teichoic acid linkage unit, i.e. the formation of undecaprenyl-PP-N-acetylglucosamine. Inhibition of tagO expression mediated by an IPTG-inducible P(spac) promoter led to the development of a coccoid cell morphology, a feature characteristic of mutants blocked in teichoic acid synthesis. Indeed, analyses of the cell-wall phosphate content, as well as the incorporation of radioactively labelled precursors, revealed that the synthesis of poly(glycerol phosphate) and poly(glucosyl N-acetylgalactosamine 1-phosphate), the two strain 168 teichoic acids known to share the same linkage unit, was affected. Surprisingly, under phosphate limitation, deficiency of TagO precludes the synthesis of teichuronic acid, which is normally induced under these conditions. The regulatory region of tagO, containing two partly overlapping sigma(A)-controlled promoters, is similar to that of sigA, the gene encoding the major sigma factor responsible for growth. Here, the authors discuss the possibility that TagO may represent a pivotal element in the multi-enzyme complexes responsible for the synthesis of anionic cell-wall polymers, and that it may play one of the key roles in balanced cell growth.
منابع مشابه
Teichoic acid is an essential polymer in Bacillus subtilis that is functionally distinct from teichuronic acid.
Wall teichoic acids are anionic, phosphate-rich polymers linked to the peptidoglycan of gram-positive bacteria. In Bacillus subtilis, the predominant wall teichoic acid types are poly(glycerol phosphate) in strain 168 and poly(ribitol phosphate) in strain W23, and they are synthesized by the tag and tar gene products, respectively. Growing evidence suggests that wall teichoic acids are essentia...
متن کاملWall teichoic acid polymers are dispensable for cell viability in Bacillus subtilis.
An extensive literature has established that the synthesis of wall teichoic acid in Bacillus subtilis is essential for cell viability. Paradoxically, we have recently shown that wall teichoic acid biogenesis is dispensable in Staphylococcus aureus (M. A. D'Elia, M. P. Pereira, Y. S. Chung, W. Zhao, A. Chau, T. J. Kenney, M. C. Sulavik, T. A. Black, and E. D. Brown, J. Bacteriol. 188:4183-4189, ...
متن کامل4-3. Cell wall structure of E. coli and B. subtilis
The structure of peptidoglycans of Escherichia coli and Bacillus subtilis is similar except for a few minor modifications, but murein (cell wall) structures are extremely different because the major cell wall constituents, anionic polymers, are not attached to peptidoglycans of E. coli but are attached to those of B. subtilis. Thickness of the cell walls in B. subtilis and the presence of an ou...
متن کاملDistinct and essential morphogenic functions for wall- and lipo-teichoic acids in Bacillus subtilis.
Teichoic acids (TAs) are anionic polymers that constitute a major component of the cell wall in most Gram-positive bacteria. Despite decades of study, their function has remained unclear. TAs are covalently linked either to the cell wall peptidoglycan (wall TA (WTA)) or to the membrane (lipo-TA (LTA)). We have characterized the key enzyme of LTA synthesis in Bacillus subtilis, LTA synthase (Lta...
متن کاملInfluence of Bacillus subtilis phoR on cell wall anionic polymers.
In Bacillus subtilis the Pho regulon is controlled by a sensor and regulator protein pair, PhoR and PhoP, that respond to phosphate concentrations. To facilitate studies of the Pho regulon, a strain with an altered PhoR protein was isolated by in vitro mutagenesis. The mutation in this strain (phoR12) leads to the production of a PhoR sensor kinase that, unlike the wild-type, is functionally ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Microbiology
دوره 148 Pt 7 شماره
صفحات -
تاریخ انتشار 2002